Distributed Learning in Referral Networks

نویسنده

  • ASHIQUR RAHMAN KHUDABUKHSH
چکیده

Human experts as autonomous agents in a referral network must decide whether to accept a task or refer to a more appropriate expert, and if so to whom. In order for the referral network to improve over time, the experts must learn to estimate the topical expertise of other experts. This thesis extends concepts from Multi-agent Reinforcement Learning and Active Learning to referral networks. Among a wide array of algorithms evaluated, Distributed Interval Estimation Learning (DIEL), based on Interval Estimation Learning, was found to be promising for learning appropriate referral choices, compared to Greedy, Q-learning, Thompson Sampling and Upper Confidence Bound (UCB) methods. DIEL's rapid performance gain in the early phase of learning makes it a practically viable algorithm, including when multiple referral hops are allowed. In addition to a synthetic data set, we compare the performance of several topperforming referral algorithms on a referral network of high-performance Stochastic Local Search (SLS) solvers for the propositional satisfiability problem (SAT). Our experimental results demonstrate that the referral learning algorithms can learn appropriate referral choices in the real task of solving satisfiability problems where expertise does not obey any known parameterized distribution. Apart from evaluating overall network performance, we conduct a robustness analysis across the learning algorithms, with an emphasis on capacity constraints (limits on number of tasks per time period), evolving networks (changes in connectivity or agents joining or leaving the referral network) and expertise drift (skills improving over time or atrophying through disuse) --situations that often arise in real-world scenarios but are largely ignored in the Active Learning literature. Several high-performance referral learning algorithms proved to be robust to capacity constraints and evolving networks, while Hybrid, a novel combination of multiple algorithms, proved the most resilient to expertise drift. In an augmented learning setting, where experts may report their top skills to their colleagues, we proposed three algorithms, proactive-DIEL, proactive-Q-Learning, and proactive-$\epsilon$Greedy. All proactive algorithms exhibited robustness to noisy self-skill estimates, evolving networks and strategic misreporting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Distributed Learning in Expert Referral Networks

Human experts or autonomous agents in a referral network must decide whether to accept a task or refer to a more appropriate expert, and if so to whom. In order for the referral network to improve over time, the experts must learn to estimate the topical expertise of other experts. This paper extends concepts from Reinforcement Learning and Active Learning to referral networks, to learn how to ...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017